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Considerations for Uncertainty Quantification Analyses



Your modeling is probably more uncertain than 

you think it is.

• Today, we’re going to focus on how to include ignorance in 

Uncertainty Quantification (UQ) analyses, and potential 

consequences of ignoring input ignorance

• There are other topics we’ll touch on today that warrant their own 

sessions, and I propose that we schedule them!

• We typically treat every input variable to a simulation as an 

independent random variable

• Variability is not the same as Ignorance

• If we don’t even know the bounding values of an input, we have a bigger 

problem!

• Treating everything as variability and excluding ignorance effects 

obfuscates information in Uncertainty Quantification

• Good news!  There are ways to combine both and 

uncover/communicate more robust uncertainty.
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Uncertainty Quantification (UQ) Components
Typical problem setup & workflow
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“Inputs we vary to study

system behavior/performance”

“Model of system of interest

& execution machinery”

“Outputs customers 

care about for

performance,

margin assessment, 

etc.”

“SRQ”

Classification types:

Aleatory (variability)

Epistemic (ignorance)



When we say ‘Monte Carlo’…
(What we tend to do for UQ)

• We tend to vary our inputs only as:

• Uniform Distributions (note:  mean = median)

• Gaussian Distributions (note:  mean = median)

• The above distributions are mathematically convenient, and are 

emphasized when teaching Probability Theory

• Very rarely do we:

• Use a different Distribution

• Correlate inputs to our Monte Carlo Analyses

• Ask ourselves: “do we REALLY know what that distribution is?”

• If you don’t have measured data & statistical analysis to back it up, the 

answer is “no” and it should be treated as ignorance (an epistemic input)

• Use more advanced sampling techniques to reduce computational load 

and results crowding the E[x] region

• We rely on number of runs to ensure we properly populate the tails.

© 2018 California Institute of Technology. Government sponsorship acknowledged.



Typical Input Deck for a ‘Monte Carlo’
Example taken from Europa Lander DDL Simulation input deck

Category Assembly Parameter Units

Lower Bound 

Value

Nominal 

Value

Upper Bound 

Value Distribution

Coordinate 

Frame

Last 

Update Source Comment

Mass_Properties Lander_Stowed Mass kg 279.424 377.6 475.776 Uniform not applicable 1/12/17Brant Cook Lander properties in DS Configuration

Mass_Properties Lander_Stowed Xcg mm 0 not applicable LNDR Frame 1/12/17Brant Cook pos_error_xy_mag and pos_error_xy_az define relevant dispersions

Mass_Properties Lander_Stowed Ycg mm 0 not applicable LNDR Frame 1/12/17Brant Cook pos_error_xy_mag and pos_error_xy_az define relevant dispersions

Mass_Properties Lander_Stowed Zcg mm 160.00 180.00 200.00 Uniform LNDR Frame 1/12/17Brant Cook

Mass_Properties Lander_Stowed pos_error_xy_mag mm 0 0 5 Uniform LNDR Frame 1/12/17Brant Cook defines magnitude of CG position error in xy plane

Mass_Properties Lander_Stowed pos_error_xy_az deg 0 0 360 Uniform LNDR Frame 1/12/17Brant Cook defines orientation/clocking of interface position error in xy plane

Mass_Properties Lander_Stowed Ixx kg*mm^2 40074636.36 54154914.0 68235191.64 Uniform LNDR Frame 1/12/17Brant Cook

Mass_Properties Lander_Stowed Iyy kg*mm^2 36386791.6 49171340.0 61955888.4 Uniform LNDR Frame 1/12/17Brant Cook

Mass_Properties Lander_Stowed Izz kg*mm^2 64797834.34 87564641.0 110331447.7 Uniform LNDR Frame 1/12/17Brant Cook

Mass_Properties Lander_Deployed Mass kg 279.424 377.6 475.776 Uniform not applicable 1/12/17Brant Cook Lander properties in open (petals fully deployed) SkyCrane Configuration

Mass_Properties Lander_Deployed Xcg mm 0 not applicable LNDR Frame 1/12/17Brant Cook pos_error_xy_mag and pos_error_xy_az define relevant dispersions

Mass_Properties Lander_Deployed Ycg mm 0 not applicable LNDR Frame 1/12/17Brant Cook pos_error_xy_mag and pos_error_xy_az define relevant dispersions

Mass_Properties Lander_Deployed Zcg mm 209.00 229.00 249.00 Uniform LNDR Frame 1/12/17Brant Cook

Mass_Properties Lander_Deployed pos_error_xy_mag mm 0 0 5 Uniform LNDR Frame 1/12/17Brant Cook defines magnitude of CG position error in xy plane

Mass_Properties Lander_Deployed pos_error_xy_az deg 0 0 360 Uniform LNDR Frame 1/12/17Brant Cook defines orientation/clocking of interface position error in xy plane

Mass_Properties Lander_Deployed Ixx kg*mm^2 53721005.22 72595953.0 91470900.78 Uniform LNDR Frame 1/12/17Brant Cook

Mass_Properties Lander_Deployed Iyy kg*mm^2 50033129.38 67612337.0 85191544.62 Uniform LNDR Frame 1/12/17Brant Cook

Mass_Properties Lander_Deployed Izz kg*mm^2 71013829.9 95964635.0 120915440.1 Uniform LNDR Frame 1/12/17Brant Cook

Mass_Properties Descent_Stage Mass kg 252.636 341.4 430.164 Uniform not applicable 1/12/17Brant Cook Dry Descent Stage properties (dry = no fuel, no helium)

Mass_Properties Descent_Stage Xcg mm 0 not applicable DS Frame 1/12/17Brant Cook with 0 kg was able to balance to within 0.89mm…zeroed out for this exercise, pos_error_xy_mag and pos_error_xy_az define relevant dispersions

Mass_Properties Descent_Stage Ycg mm 0 not applicable DS Frame 1/12/17Brant Cook

with 6.5 kg was able to balance to within 0.015mm…zeroed out for this exercise, pos_error_xy_mag and pos_error_xy_az define relevant 

dispersions

Mass_Properties Descent_Stage Zcg mm 157.45 177.45 197.45 Uniform DS Frame 1/12/17Brant Cook

Mass_Properties Descent_Stage pos_error_xy_mag mm 0 0 5 Uniform DS Frame 1/12/17Brant Cook defines magnitude of CG position error in xy plane

Mass_Properties Descent_Stage pos_error_xy_az deg 0 0 360 Uniform DS Frame 1/12/17Brant Cook defines orientation/clocking of interface position error in xy plane
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Classification/

Organization

Parameter

Name/ID

Units

Parameterization

Values

Distribution

Type
Assoc.

Frame

Revision Control Information

Other things we do:  

• Randomly sample from a set of files by file name (usually Uniform weighting)

• Atmospheric quantities, Terrain quantities, etc.



Example: Consequence of 

Treating Ignorance as 

Variability



Background on Uncertainty Types
Seminal paper: Ferson & Ginzburg, 1996
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• If we have an uncertain input, and we only know an interval, it 

is typical (and incorrect!) to assign a uniform distribution and 

include it in sampled set of inputs for running the model

• Ferson & Ginzburg show with a simple multiplication of two 

variables that the result is misleading/wrong using that 

machinery

• Common sense tells us AB = [0.06, 0.2], but…



Differing results under differing assumptions
Source: Ferson & Ginzburg
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PDF

CDF

(b) and (c) are

result of applying

simple “Monte Carlo“

machinery.

Smallest region for (c)

Assuming correlation

Between -1 to +1

Interval guaranteed to

contain product AB

(intuition)

Smallest region for (c)

Not restricting correlation

Smallest region to 

contain (c) given no

other info. (same as (a))

CDF of (b)

Illustrates that ignorance should be treated differently than variability to produce

a region of CDFs instead of a single CDF, which can be radically different under

different assumptions.

If we do not know anything about A and B other than the interval, we need 

machinery and analytical techniques that produce (f)



“Aleatory” vs. “Epistemic” uncertainty
Source:  Roy & Oberkampf 2011

• Aleatory uncertainty:

Aleatory uncertainty (also called irreducible uncertainty, stochastic 

uncertainty, or variability) is uncertainty due to inherent variation or 

randomness and can occur among members of a population or due to 

spatial or temporal variations. Aleatory uncertainty is generally 

characterized by either a probability density function (PDF) or a cumulative 

distribution function (CDF). 

• Epistemic uncertainty:

Epistemic uncertainty (also called reducible uncertainty or ignorance 

uncertainty) is uncertainty that arises due to a lack of knowledge on the 

part of the analyst, or team of analysts, conducting the modeling and 

simulation…We will represent epistemic uncertainty as an interval-valued 

quantity, meaning that the true (but unknown) value can be any value over 

the range of the interval, with no likelihood or belief that any value is more 

true than any other value. 
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So how do we 

include Epistemic

inputs (ignorance)?



Hybrid Epistemic-Aleatory UQ

Compute Range 

of Statistics

Sample 

Epistemic 

Model 

Parameters

Hybrid method may also use min/max

optimization to search for range of statistics.

Sample Aleatory 

Model 

Parameters

Run 

Simulation

Compute 

Quantities of 

Interest

Iterate

Compute 

Statistics

Pure Aleatory Method
Hybrid Epistemic-Aleatory Method

Aleatory

Loop

Epistemic

Loop
Sample All 

Model 

Parameters

Run 

Simulation

Compute 

Quantities of 

Interest

Iterate

Compute 

Statistics

Aleatory

Loop

Iterate
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A more complete/generic input deck
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ID Category Assembly Parameter Units Frame Nominal

Uncertainty 

Type P1 P2 P3 P4 P5 P6

Last 

Update Source Comments

0 Mass_Properties Lander_Deployed Mass kg NA 377.6 Epistemic 279.424 475.776 2/15/18 B. Cook

Lander 

properties in 

open (legs 

fully 

deployed) 

SkyCrane 

configuratio

n

1 Mass_Properties Lander_Deployed Xcg mm LNDR 0 Circ_Uniform 2 5 2/15/18 B. Cook

correlated to 

Circ_Unifor

m result with 

Ycg

2 Mass_Properties Lander_Deployed Ycg mm LNDR 0 Circ_Uniform 1 5 2/15/18 B. Cook

correlated to 

Circ_Unifor

m result with 

Xcg

3 Mass_Properties Lander_Deployed Zcg mm LNDR 229 Epistemic 209 249 2/15/18 B. Cook

4 PPPCS DescentEngine1 thrustunitvector_i NA DS -0.5 Constant 12/9/16 Brant Cook

vector given 

is direction 

of resultant 

thrust

5 PPPCS DescentEngine1 thrustunitvector_j NA DS 0 Constant 12/9/16 Brant Cook

vector given 

is direction 

of resultant 

thrust

6 PPPCS DescentEngine1 thrustunitvector_k NA DS -0.866 Constant 12/9/16 Brant Cook

vector given 

is direction 

of resultant 

thrust

7 PPPCS DescentEngine1 location_x mm DS

790.85

Circ_Uniform 8 2 12/9/16 Brant Cook

location of 

nozzle 

throat

8 PPPCS DescentEngine1 location_y mm DS

591.03

Circ_Uniform 7 2 12/9/16 Brant Cook

location of 

nozzle 

throat

9 PPPCS DescentEngine1 location_z mm DS

519.42

Uniform 515.42 523.42 12/9/16 Brant Cook

location of 

nozzle 

throat

Classification/

Organization Parameter

Name

Units
Parameterization values

(Depend on Uncertainty Type)Uncertainty

Type

Assoc.

Frame

Revision Control

Information

Undispersed

Nominal

Value

Unique

ID



DSENDS + LIMS Analysis Environment @ JPL

• Group 3436 historically uses DSENDS 

& MONTE to generate Monte-Carlo 

data for analysis of EDL & ProxOps

• J. Benito & C. Noyes began exploring 

the use of “Dakota” from Sandia 

National Labs as part of the MAV task 

for 6x

• Inspired by Benito & Noyes’ work, 

Group 3436 is now hooking up 

DSENDS to the imuQ and Dakota 

from L. Peterson LIMS packagein 35x 

to enable interrelated 

UQ/SA/Optimization consistent with 

the wider scientific computing V&V 

community

• The construct on previous slide is one 

of many this machinery can do.

• Customers don’t know what to ask 

for (yet)… hence these talks!



Example



A dynamics example: 1D projectile in gravity
Simple model to demonstrate methodology w/ credible results

• Simple problem:  1D acceleration field on particle 

with initial conditions (a vertical projectile)

• Physics: 

• a, b, and c are input parameters to be dispersed.

• System Response Quantities (SRQs) we care 

about:

max(x(t)) and t @ max(x(t))   

• Traditionally, we do “monte carlo”, assign all 

parameters a distribution and “roll the dice” to get a 

performance. 
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SRQs illustrated w/ interval corner cases
This problem has easy sanity check for range of SRQ results
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Expected range

of heights 

(SRQ #1)

Expected range

of time to max height

(SRQ #2)

max altitude range is 47.44 to 63.47 [m] 
time to max altitude range is 9.71 to 11.34 [s] 



Traditional “Monte Carlo” results
treating a, b, and c as parameters with known variability
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a: uniform b: Weibull c: Gaussian

max(x) t @ max(x)

ONE CDF per SRQ

In
p

u
ts

O
u

tp
u

ts



Regarding Monte Carlo

• MC is adequate only if all inputs are truly aleatory

• Needs appropriate sampling to capture assessment percentiles 

• What to do if there isn’t a high confidence in input distributions

• Treat inputs w/ ignorance as epistemic:  sample epistemic inputs across 

their expected range, and vary ALL OTHER ALEATORY INPUTS at 

EVERY PERMUTATION of epistemic samples (mini MC at each 

epistemic parameter permutation)

• This essentially combines “worst case” analysis and uncertainty 

quantification to produce a range of CDFs for System Response 

Quantities (SRQs)

• Can discover where worst cases are not at the limits of the range of 

epistemic inputs



What if:  b doesn’t have any data to back up PDF?
a: uniform b: Epistemic c: Gaussian

max(x) t @ max(x)

Produces a RANGE OF CDFs for each SRQ: a.k.a. “p-boxes”



Interpreting a P-Box (a.k.a. “horsetail”) plot
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SRQ: t @ max(x)

Region where

Actual CDF may lie

(grey area)

Possible range of 

Percentiles for given

SRQ value (height of

Shaded area)

Possible range SRQ

Values for a given

Percentile (width of

Shaded area)

All Aleatory result

For comparison

(dashed line)



“Being honest” means including ignorance 

appropriately in UQ analysis

• We can now answer questions like:

• “What is the range of SRQ values correspond to a particular percentile?”

• “What range of percentiles correspond to a particular SRQ value?”

• Requirements can now be assessed relative to ignorance in the 

input parameters (where there is not a valid statistical model).

• Absence of a statistical model for an input does not justify a 

“uniform” distribution – this may not be conservative.

• Worst case SRQ can be at a small part, even a single value, of the epistemic 

range(s)

• Worst case SRQ may not be at limits of epistemic variable range



Comparing against a Requirement/Limit/etc.
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SRQ: t @ max(x)

SRQ interval

at P95: 1.025 s

Percentile range

(uncertainty) at

Specified Metric: 

P50-P100 (50%!)

Note:  All aleatory

analysis in this case

passes requirement

Requirement: 

SRQ < 11.0 sec 

@ P95



All Epistemic?  Does it match intuition?
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SRQ 1: max height SRQ 2: time to max height

max altitude range is 47.44 to 63.47 [m]

time to max altitude range is 9.71 to 11.34 [s]

Matches corner-case intuition check.



Dynamic snatch load 

example (L. Peterson)



Two-Strap Benchmark Problem

• Proved to be most challenging benchmark

(buckling, instability, soft contact)

Initial

Stow

Release and Expansion

Snap-Through



Two-Strap Benchmark Animation



Two-Strap Benchmark UQ Implementation

• Quantities of Interest (QoI/SRQ):

• X and Y reaction forces on the 

left-most cart

• Epistemic Variabilities (3):

• Strap-Strap Friction Coefficient

• Interval-valued 0.1 to 0.8

• Strap Material Young’s Modulus

• Interval-valued -20% to +20%

• Strap Thickness

• Interval-valued -20% to +20%

• Aleatory Variabilities (5):

• Cart Material Properties

• Gaussian, 3% standard deviation, +/-30% bound 

• Strap Density and Poisson’s Ratio

• Gaussian, 3% standard deviation, +/-30% bound



Two-Strap Monte Carlo UQ Results (Rx)

LHS (2000)

Single QoI Value 

for each Probability

CDF Plot:  Probability Model QoI is < x



Two-Strap Epistemic-Aleatory UQ Results (Rx)

IVP:  LHS (12) x LHS (128)

“Horsetail Plot:  CDF for each outer loop 

(i.e. given set of epistemic values)

Range of Plausible 

QoI Values for each 

Probability



Two-Strap Epistemic-Aleatory UQ Results (Rx)

IVP:  LHS (12) x LHS (128)

“Horsetail Plot:  CDF for each outer loop 

(i.e. given set of epistemic values)

Range of Plausible 

Probabilities for each Value



Two-Strap Traditional Monte Carlo UQ Results (Ry)

LHS (2000)



Two-Strap Epistemic-Aleatory UQ Results (Ry)

IVP:  LHS (12) x LHS (128)



Comparison of Two-Strap Monte Carlo and 

Hybrid Epistemic-Aleatory UQ Results

• Baseline Model Prediction

• Monte Carlo:  P31

• Hybrid: ~P0 to P100

• P95 Prediction

• Monte Carlo: +96%

• Hybrid: -6% to +167%

• Implications

• Design margin would be effected by the 

(unknown) values of the 

epistemic variables

• Opportunity for more robust designs

• and/or

• Need additional testing (calibration)

Plausible Baseline

Prediction Probabilities

Baseline

Prediction Probability

P95 Value

Plausible 

P95 Values



What the cycle of ignorance 

reduction looks like with 

distinction of ignorance & 

variability



The UQ Design/Analysis Process
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Update Inputs and/or
models

Analysis of SRQs:
Margins to requirements 

and metrics

Work with CogEs to
reduce ignorance
or refine model

Perform a UQ analysis

Decide where to apply 
resources to reduce 

ignorance or refine model

Margins met w/ 

appropriate risk?

N
Can we change the 

requirements?

N

Alter Requirements/Metrics

Y

Y
Analysis Cycle Done

Start
Analysis of SRQs:

Outlier Assessment

Analysis of SRQs:
“Fat Tail” Assessment

Analysis of SRQs:
Statistical Validity 

Assesment

Topics for Future Talks

Noble goal:  Reduce ignorance by credibly

changing all epistemic inputs to aleatory inputs.  

This is not always possible.



Low High

Input Parameter X = Total Ignorance Output SRQ = violating requirement w/ X Epistemic

Hybrid Aleatory/Epistemic UQ
Creates CDFs of SRQs

Post-Processing ID’s problem areas

Low High

Input Parameter X = Sampled Variability Model

1 2 3

4

Tests performed to get 
information about true
variability of input

Hybrid Aleatory/Epistemic UQ
Creates CDFs of SRQs

5

6 7

Post-Processing ID’s problem areas

8

Inputs Outputs

The Input Uncertainty Improvement Process
C

y
c
le

 1
C

y
c
le

 2

NEW KNOWLEDGE

Requirement

Sets Avoid

Region

Requirement

Sets Avoid

Region

Food for thought:  What are consequences  of getting right-hand 

tail wrong (too short/thin) in Cycle 2 input model?
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Results Progression Example (1DoF Problem)
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Cycle 1: All Epistemic Cycle 2: v0 now Aleatory Cycle 3: v0 and x0 Aleatory
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Note that on previous slide, an 

all-variability (no ignorance) 

treatment passes requirements 

for all analytical cycles.



Relating to GN&C…



In simple 1D trajectory example:

• What if one were to design a trigger to best capture when 

the projectile is at it’s maximum height?

• Techniques described here allow the analyst to combine 

effects of ignorance and variability for robustness assessment.

• Could be used to justify simplification of trigger design

• Could prove simple design isn’t accurate enough given ignorance 

and or variability

• Because we’re being honest about what we know and what we 

don’t know, we can make decisions based on our lack of 

knowledge

• Make design decisions based on more accurate representation of 

uncertainty ranges in SRQs

• Invest in more testing to turn epistemic into aleatory
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In the strap deployment example:

• What if there is a closed-loop controller sensitive to IMU 

measurements of the forces seen from the strap 

deployment?

• The CDF variability of dynamics can now be included in 

robustness assessment of control scheme and decisions can be 

tied directly to ignorance and/or variability

• Knowledge of dynamic event uncertainty could prevent poor 

decisions form being made

• Case in point:  Schiaparelli failure due to IMU saturation

• The dynamics ranges and associated modeling assumptions led 

analysts to believe that the high rates they occasionally saw in 

EDL simulations were “low-likelihood outliers” therefore saturation 

events were unlikely.

• Had state-of-the-art ignorance/variability inclusion in their UQ 

been used, would they have thought they had adequate margins?
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Recommendations

• We need to treat ignorance and variability separately in UQ

• Just because the “hammer” of Bayesian Monte Carlo 

machinery exists, don’t force ignorance to look like variability 

(a “nail”) just to use the machinery in hand – doing so 

obfuscates useful information for decision making purposes.

• The larger V&V community (ASME, DoE, DoD) has proven 

and recommended techniques of looking at these problems 

and techniques for managing computational burdens 

(advanced sampling methods, etc.)

• See: Sandia National Labs’ DAKOTA tool as an example

• We should avail ourselves of tools/techniques/expertise to 

ensure that we can communicate UQ results clearly
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Ongoing work in JPL Group 3436

• Adoption of imuQ + DAKOTA to include epistemic variability 

and multi-looped UQ analyses

• Development of Monte-Carlo Processing (MCP) to facilitate the 

knowledge/risk assessment process

• Modernization of simulation deployment methods to enable 

use of JPL CAE-provided Amazon GovCloud computing to 

deal with increased computation required to reduce time-to-

solution

• Using non-commercial tools to ensure scalability that can track 

with parallel computation needs for analysis
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Thank you


